Skip to main content
Log in

Edaphic fauna and residue decomposition rate under different management of plant species in no-tillage system

  • Original Article
  • Published:
Community Ecology Aims and scope Submit manuscript

Abstract

The no-tillage system (NTS) maximizes the use of plant species diversification during cultivation while minimizing disturbance to the seeding row and using the crop residues from previous species. Our objective was to compare management practices, including crop rotation (CR) and crop succession (CS), as well as a native fragment serving as a reference area (FC), and explore the relationship between litter decomposition and soil biological quality. To evaluate the decomposition of litter from soybean cultivation, we utilized fine (0.5 mm) and coarse (10 mm) mesh litter bags, which were placed in the soil and contained the winter crop residues. Additionally, sampling for edaphic fauna, microbiological, chemical, enzymatic, and environmental variables was conducted. A higher remaining mass was observed in the fine mesh litter bags (CR 75.5%, FC 68.3%, CS 63.9%) compared to the coarse mesh (FC 54.9%, CR 35.3%, CS 27.9%). Our results showed that diverse plant species composition led to a slower decomposition rate, similar to that found in native forests, stabilizing the agricultural system. Also, the decomposition rate was influenced by management practices, species selection, climate, and microbial activity. Epigeic invertebrates, particularly Detritivores/decomposers groups, played a significant role in litter decomposition, with higher decomposition rates observed in the coarse mesh. Microbial activity, influenced by soil attributes such as arylsulfatase enzyme activity, organic matter content, and soil moisture, significantly affected litter decomposition. The diversity of plant species in NTS increases the soil fauna and reduces litter decomposition rate. Therefore, we suggest NTS with CR using multiple plant species as a management that favors soil organisms in long-term systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alef, K., & Nannipieri, P. (1995). Methods in applied soil microbiology and biochemistry. Academic Press.

    Google Scholar 

  • Anderson, J. D., & Ingram, J. S. I. (1993). Tropical soil biology and fertility: A handbook of methods. Oxford University Press.

    Google Scholar 

  • Anderson, T. H. (1994). Physiological analysis of microbial communities in soil: Application sand limitations. In K. Ritz, J. Dighton, & K. E. Giller (Eds.), Beyond the biomass (1st ed., pp. 67–76). British Society of Soil Science.

    Google Scholar 

  • Arf, O., Meirelles, F. C., Portugal, J. R., Buzetti, S., Sá, M. E., & Rodrigues, A. F. R. (2018). Benefits of maize intercropped with grasses and legumes and their effects on productivity in no-till systems. The Brazilian Journal of Maize and Sorghum, 17, 431–444. https://doi.org/10.18512/1980-6477/rbms.v17n3p431-444

    Article  Google Scholar 

  • Balin, N. M., Biachini, C., Ziech, A. R. D., Luchese, A. V., Mauricio, V. A., & Conceição, P. C. (2017). Soil fauna under different soil management systems with oats and crops cucurbits. Revista Scientia Agraria, 18, 74–84. https://doi.org/10.5380/rsa.v18i3.52133

    Article  Google Scholar 

  • Bani, A., Pioli, S., Ventura, M., Panzacchi, P., Borruso, L., Tognetti, R., Tonon, G., & Brusetti, L. (2018). The role of microbial community in the decomposition of leaf litter and deadwood. Applied Soil Ecology, 126, 75–84. https://doi.org/10.1016/j.apsoil.2018.02.017

    Article  Google Scholar 

  • Barbosa, V., Garçia, P., Rodrigues, E., & Paula, A. (2017). Biomass, carbon, and nitrogen in accumulated litter of planted and native forests. Floresta & Ambiente, 24, 20150243. https://doi.org/10.1590/2179-8087.024315

    Article  Google Scholar 

  • Baretta, D., Bartz, M. L. C., Fachini, I., Anselmi, R., Zortéa, T., & Maluche-Baretta, C. R. D. (2014). Soil fauna and its relation with environmental variables in soil management systems. Revista Ciencia Agronomica, 45, 871–879. https://doi.org/10.1590/S1806-66902014000500002

    Article  Google Scholar 

  • Basirat, M., Mousavi, S. M., & Abbaszadeh, S. (2019). The rhizosheath: A potential root trait helping plants to tolerate drought stress. Plant and Soil, 445, 565–575. https://doi.org/10.1007/s11104-019-04334-0

    Article  CAS  Google Scholar 

  • Bauer, D., Fuhr, C. S., & Schmitt, J. L. (2017). Dinamica do acumulo e decomposição de serapilheira em floresta estacional semidecidual subtropical. Pesquisas Botânica (brazil), 70, 225–235.

    Google Scholar 

  • Bizari, D. R., Ferrarezi, R. S., Pereira, F. F. S., & Matsura, E. E. (2019). Biomass loss of corn mulching under no-till system for irrigated common bean production. Irriga, 24, 500–511. https://doi.org/10.15809/irriga.2019v24n3p400-511

    Article  Google Scholar 

  • Bradford, M. A., Maynard, D. S., Wieder, W. R., & Wood, S. A. (2016). Understanding the dominant controls on litter decomposition. Journal of Ecology, 104, 229–238. https://doi.org/10.1111/1365-2745.12507

    Article  CAS  Google Scholar 

  • Brown, G. G., Niva, C. C., Zagatto, M. R. G., Ferreira, S. A., Nadolny, H. S., Cardoso, G. B. X., Santos, A., Martinez, G. A., Pasini, A., Bartz, M. L. C., Sautter, K. D., Thomazini, M. J., Baretta, D., Silva, E., Antoniolli, Z. I., Decaëns, T., Lavelle, P. M., Sousa, J. P., Carvalho, F. (2015). Biodiversidade da fauna do solo e sua contribuição para os serviços ambientais. In Serviços ambientais em sistemas agrícolas e florestais do Bioma Mata Atlântica (pp. 122–154). EMBRAPA, Brasilia

  • Calheiros, A. C., Silva, C. A. R., Acioli, T. G. A., Araujo, K. D., & Souza, M. A. (2019). Relation of soil moisture with the diversity of edaphic mesophena organisms, Alagoas. Brazilian Journal of Animal and Environmental Research, 2(6), 1924–1929.

    Google Scholar 

  • Castro, E. F., Nuvoloni, F., & Feres, R. (2018). Population dynamics of the main phytophagous and predatory mites associated with rubber tree plantations in the State of Bahia Brazil. Systematic and Applied Acarology, 23(8), 1578–1591. https://doi.org/10.11158/saa.23.8.8

  • Cavallet, B. V., Silva, E. R., Baretta, C. R. D. M., & Rezende, R. S. (2022). Effect of agriculture land use onstandart cellulosic substrates breakdownand invertebrates’ community. Community Ecology, 23, 277–288. https://doi.org/10.1007/s42974-022-00103-9

    Article  Google Scholar 

  • Crawley, M. J. (2007). The R Book. England: Wiley.

    Book  Google Scholar 

  • D’hose, T., Molendert, L., Vooren, L. V., Berg, W., Hoek, H., Runia, W., Evert, F., Berg, H., Spiegel, H., Sanden, T., Grignani, C., & Ruysschaert, G. (2018). Responses of soil biota to non-inversion tillage and organic amendments: An analysis on European multiyear field experiments. Pedobiologia, 66, 18–28. https://doi.org/10.1016/j.pedobi.2017.12.003

    Article  Google Scholar 

  • Dormann, C. F. E., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J. R. G., Gruber, B., Lafourcade, B., Leitão, P. J., Münkemüller, T., Mcclean, C., Osborne, P. E., Reineking, B., Schröder, B., Skidmore, A. K., Zurell, D., & Lautenbach, S. (2013). Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36, 27–46. https://doi.org/10.1111/j.1600-0587.2012.07348.x

    Article  Google Scholar 

  • Elmqvist, T., Valkó, O., Walloe, L., Smagghe, G., Van Montagu, M., Mihailova, M., Yovchevska, P., Basic, F., Prach, K., Svecova, E. B., Helenius, J., Peltonen-Sainio, P., Öpik, M., Niinemets, U., Takkis, K., Delseny, M., Karamanos, A., Lengyel, S., Morgante, M., Kadziuliene, Z., Veen, G. F., Singh, B. R., Tryjanowski, P., Santos, F. D., Janisova, M., Bengtsson, J., Boivin, P., Hartley, S. (2022). EASAC policy report 44: Regenerative agriculture in Europe: A critical analysis of contributors to European Union Farm to Fork and Biodiversity Strategies. Vol. 44, EASAC, Halle. https://easac.eu/fileadmin/PDF_s/reports_statements/Regenerative_Agriculture/EASAC_RegAgri_Web_290422.pdf

  • Erdenebileg, E., Wang, C., Ye, X., Cui, Q., Du, J., Huangz, L. G., & Cornelissen, J. H. C. (2020). Multiple abiotic and biotic drivers of long-term wood decomposition within and among species in the semiarid inland dunes: A dual role for stem diameter. Functional Ecology, 34, 1472–1484. https://doi.org/10.1111/1365-2435.13559

    Article  Google Scholar 

  • Ferreira, E., Stone, L. F., & Didonet, C. C. G. M. (2017). Population and microbial activity of the soil under an agroecological production systems. Revista Ciência Agronômica, 48, 22–31. https://doi.org/10.5935/1806-6690.20170003

    Article  Google Scholar 

  • Fontana, L. E., Tonello, G., Restello, R. M., & Hepp, L. U. (2020). Agriculture presence changes the leaf decomposition and of the aquatic invertebrate communities composition in subtropical streams. Revista Perspectiva, 44(165), 07–19. https://doi.org/10.31512/persp.v.44.n.165.2020.70.p.7-20

    Article  Google Scholar 

  • Forstall-Sosa, K. S., Souza, T. A. F., Lucena, E. O., Silva, S. A. I., Ferreira, J. T. A., Silva, T. N., Santos, D., & Niemeyer, J. C. (2020). Soil macroarthropod community and soil biological quality index in a green manure farming system of the Brazilian semi-arid. Biologia, 76, 907–917. https://doi.org/10.2478/s11756-020-00602-y

    Article  Google Scholar 

  • Gomes, D. S., Barbosa, A. S., Santos, T. M., Santos, S. K., Silva, J. H. C. S., & Aquino, Í. S. (2021). Release kinetics of CO2 and phytomass decomposition in systems of use and soil management. Research, Society and Development, 10, e9810111413. https://doi.org/10.33448/rsd-v10i1.11413

    Article  Google Scholar 

  • Graça, M. A. S., Barlocher, F., & Gessner, M. O. (2005). Methods to study litter decomposition. Springer, New York City. https://doi.org/10.1007/1-4020-3466-0

    Article  Google Scholar 

  • Khangura, R., Ferris, D., Wagg, C., & Bowyer, J. (2023). Regenerative agriculture: A literature review on the practices and mechanisms used to improve soil health. Sustainability, 15, 2338. https://doi.org/10.3390/su15032338

    Article  CAS  Google Scholar 

  • Kraft, E., Oliveira Filho, L. C. I., Carneiro, M. C., Klauberg Filho, O., Barreta, C. R. D. M., & Barreta, D. (2021). Edaphic fauna affects soy bean productivity under no-till system. Scientia Agricola, 78, e20190137. https://doi.org/10.1590/1678-992X-2019-0137

    Article  CAS  Google Scholar 

  • Kraft, E., Alexandre, D., Oliveira Filho, L. C. I., Baretta, C. R. D. M., Klauberg Filho, O., & Baretta, D. (2023). Is there a relationship between enchytraeids diversity and community with soybean (Glycine max L.) productivity in no-till system in subtropical soils of Brazil? Annals of Applied Biology, 183(2), 159–169. https://doi.org/10.1111/aab.12843

    Article  CAS  Google Scholar 

  • Legendre, P., & Legendre, L. (1998). Numerical Ecology. Elsevier.

    Google Scholar 

  • Lucero, E. M., Vieira, C. B., Vieira, H. U., & Angela, D. (2020). Edaphic invertebrates in summer and winter crops at northwest of Rio Grande do Sul. Revista Brasileira De Agropecuária Sustentável, 10, 67–74. https://doi.org/10.21206/rbas.v10i1.9281

    Article  Google Scholar 

  • Matos, P. S., Barreto-Garcia, P. A. B., & Scoriza, R. N. (2019). Effect of different forest management practices on the soil macrofauna in the arboreal Caatinga. Revista Caatinga, 32, 741–750. https://doi.org/10.1590/1983-21252019v32n318rc

    Article  Google Scholar 

  • Melo, L. N., Souza, T. A. F., & Santos, D. (2019). Cover crop farming system affects macroarthropods community diversity in Regosol of Caatinga, Brazil. Biologia, 74, 1653–1660. https://doi.org/10.2478/s11756-019-00272-5

    Article  CAS  Google Scholar 

  • Mendes, I., Carvalho, S., Djalma, M. G., & Reis Junior, F. B. L. (2018). Bioanálise de solo: como acessar e interpretar a saúde do solo. Planaltina: EMBRAPA Cerrado.

    Google Scholar 

  • Morini, M. S. C., Silva, O. G. M., Zambon, V., & Nocelli, R. C. F. (2017). Cultura de cana-de-açúcar no Brasil: manejo, impactos econômicos, sociais e ambientais. In C. S. Fontanetti & O. C. Bueno (Eds.), Cana-de-açúcar e seus impactos: uma visão acadêmica (pp. 31–50). Bauru: Canal 6.

    Google Scholar 

  • Nehrani, S. H., Saadat, S., Delavar, M. A., Taheri, M., & Holder, N. M. (2020). Quantification of soil quality under semi-arid agriculture in the northwest of Iran. Ecological Indicators, 108, 105770. https://doi.org/10.1016/j.ecolind.2019.105770

    Article  CAS  Google Scholar 

  • Oberč, B. P., & Arroyo Schnell, A. (2020). Approaches to sustainable agriculture. Exploring the pathways towards the future of farming. Brussels: iUCN EURO.

    Book  Google Scholar 

  • Pedro, L., Pereira-Fernández, L. G., Gallego, E. L., Pérez-Marcos, M., & Sanchez, J. A. (2020). The effect of cover crops on the biodiversity and abundance of ground dwelling arthropods in a mediterranean pear orchard. Agronomy, 10, 580. https://doi.org/10.3390/agronomy10040580

    Article  Google Scholar 

  • Peng, Y., Vesterdal, L., Penuelas, J., Peguero, G., Wu, Q., Hedenec, P., Yue, K., & Wu, F. (2023). Soil fauna effects on litter decomposition are better predicted by fauna communities within litterbags than by ambient soil fauna communities. Plant and Soil, 487, 49–59. https://doi.org/10.1007/s11104-023-05902-1

    Article  CAS  Google Scholar 

  • Pioli, S., Sarneel, J., Thomas, H. J. D., Domene, X., Andrés, P., Hefting, M., Reitz, T., Laudon, H., Sandén, T., Piscová, V., Aurela, M., & Brusetti, L. (2020). Linking plant litter microbial diversity to microhabitat conditions, environmental gradients and litter mass loss: Insights from a European study using standard litter bags. Soil Biology and Biochemistry, 144, 107778.

    Article  CAS  Google Scholar 

  • Ruggiero, M. A., Gordon, D. P., Orrell, T. M., Bailly, N., Bourgoin, T., Brusca, R. C., Cavalier-Smith, T., Guiry, M. D., & Kirk, P. M. A. (2015). Higher level classification of all living organisms. PLoS ONE, 10, 1–60. https://doi.org/10.1371/journal.pone.0119248

    Article  CAS  Google Scholar 

  • Saad, L. P., Souza-Campana, D. R., Bueno, O. C., & Morini, M. S. C. (2017). Vinasse and its influence on ant (Hymenoptera: Formicidae) communities in sugarcane crops. Journal of Insect Science, 17(1), 11. https://doi.org/10.1093/jisesa/iew103

    Article  PubMed  PubMed Central  Google Scholar 

  • Schulte, L. A., Dale, B. E., Bozzetto, S., Liebman, M., Souza, G. M., Haddad, N., Richard, T. L., Basso, B., Brown, R. C., Hilbert, J. A., & Arbuckle, J. G. (2022). Meeting global challenges with regenerative agriculture producing food and energy. Nature Sustainnability, 5, 384–388. https://doi.org/10.1038/s41893-021-00827-y

    Article  Google Scholar 

  • Salomão, P. E. A., Kriebel, W., Santos, A. A., & Martins, A. C. E. (2020). The importance of straw no-tillage system for soil restructuring and organic matter restoration. Research, Society and Development, 9, e154911870. https://doi.org/10.33448/rsd-v9i1.1870

    Article  Google Scholar 

  • Santos, D. P., Marchão, R. L., Barbosa, R. S., Junior, J. P. S., Silva, E. M., Nóbrega, J. C. A., Nive, C. C., & Santos, G. G. (2020). Soil macrofauna associated with cover crops in an Oxisol from the southwest of Piauí state, Brazil. Arquivos Do Instituto Biológico, 87, 1–9. https://doi.org/10.1590/1808-1657000822018

    Article  Google Scholar 

  • Sarto, M. V. M., Borges, W. L. B., Bassegio, D., Pires, C. A. B., Rice, C. W., & Rosolem, C. A. (2020). Soil microbial community, enzyme activity, C and N stocks and soil aggregation as affected by land use and soil depth in a tropical climate region of Brazil. Archives of Microbiology, 202, 2809–2824. https://doi.org/10.1007/s00203-020-01996-8

    Article  CAS  PubMed  Google Scholar 

  • Silva, R., Aguiar, A. C. F., Rebelo, J. M. M., Silva, E. F. F., Silva, F. G., & Siqueira, G. M. (2019). Diversity of edaphic fauna in different soil occupation systems. Revista Caatinga, 32, 647–657. https://doi.org/10.1590/1983-21252019v32n309rc

    Article  Google Scholar 

  • Simioni, F. J., Bartz, M. L. C., Wildner, L. P., Spagnollo, E., Veiga, M., & Baretta, D. (2017). Technical and economic efficiency indicators of corn grown in no-tillage system in the State of Santa Catarina, Brazil. Revista Ceres, 64(3), 232–241. https://doi.org/10.1590/0034-737X201764030003

  • Soares, E. F., Basso, C. J., DA Silva, R. F., DA Silva, D. M., DE Almeida, H. S., Moreira, T. F., Silveira, D. C., Pasinatto, G. A., & Vicente, D. M. (2023). Poultry litter and different cover crops and their effects on the edaphic fauna community of an Oxisol. Delos: Desarrollo Local Sostenible, 16, 683–698. https://doi.org/10.1590/0034-737x201764030003

    Article  Google Scholar 

  • Sofo, A., Mininni, N. A., & Ricciuti, P. (2020). Soil macrofauna: A key factor for increasing soil fertility and promoting sustainable soil use in fruit orchard agrosystems. Agronomy, 10, 456. https://doi.org/10.3390/agronomy10040456

    Article  Google Scholar 

  • Souza, T. A. F., Santos, D., Lucena, E. O., Silva, A. J., Silva, S. A. I., Lima, B. J. S., & Marques, A. L. (2017). Solos em Sistemas Agroecológicos. In E. O. Lucena, A. J. Silva, F. J. Silva, S. A. I. Silva, A. L. Marques, B. J. S. Lima, T. A. F. Souza, & D. Santos (Eds.), Solos em Sistemas Agroecológicos (1st ed., pp. 10–40). Areia: Saraiva.

    Google Scholar 

  • Sparling, G. P., & West, A. W. (1988). A direct extraction method to estimate soil microbial C: Calibration in situ using microbial respiration and 14C labeled sells. Soil Biology & Biochemistry, 20, 337–343. https://doi.org/10.1016/0038-0717(88)90014-4

    Article  CAS  Google Scholar 

  • Tabatabai, M. A. (1994). Soil enzymes. In R. W. Weaver (Ed.), Methods of soil analysis (pp. 775–833). Soil Science Society of America.

    Google Scholar 

  • Vance, E. D., Brooks, P. C., & Jenkinson, D. S. (1987). An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 19, 703–707. https://doi.org/10.1016/0038-0717(87)90052-6

    Article  CAS  Google Scholar 

  • Verchot, L. V., & Borelli, T. (2005). Application of para-nitrophenol (pNP) enzyme assays in degraded tropical soils. Soil Biology Biochemistry, 37(4), 625–633. https://doi.org/10.1016/j.soilbio.2004.09.005

    Article  CAS  Google Scholar 

  • Viana, E., Cezimbra, J. C. G., Silva, D. M., Silva, D. A. A., Ramires, M. F., Bohrer, R. E. G., Bisognin, R. P., Guerra, D., Lanzanova, M. E., Souza, E. L., & Redin, M. (2022). Diversity of soil fauna in soils with different management systems in the north of Rio Grande do Sul. Research, Society and Development, 11, e42211528307. https://doi.org/10.33448/rsd-v11i5.28307

    Article  Google Scholar 

  • Wilhelm, B., Cánovas, J. A. B., Macdonald, N., Toonen, W. H., Baker, V., Barriendos, M., Benito, G., Brauer, A., Corella, J. P., Denniston, R., Glaser, R., Ionita, M., Kahle, M., Liu, T., Luetscher, M., Macklin, M., Mudelsee, M., Munoz, S., Schulte, L., … Wetter, O. (2019). Interpreting historical, botanical, and geological evidence to aid preparations for future floods. Wiley Interdisciplinary Reviews: Water, 6, e1318. https://doi.org/10.1002/wat2.1318

    Article  Google Scholar 

  • Yan, Z., Qi, Y., Dong, Y., Peng, Q., Guo, S., He, Y., & Li, Z. (2017). Precipitation and nitrogen deposition alter litter decomposition dynamics in semiarid temperate steppe in Inner Mongolia, China. Rangeland Ecology & Management, 71, 220–227. https://doi.org/10.1016/j.rama.2017.12.003

    Article  Google Scholar 

  • Yue, K., de Frenne, P., Van Meerbeek, K., Ferreira, V., Fornara, D. A., Wu, Q., Ni, X., Peng, Y., Wang, D., Heděnec, P., Yang, Y., Wu, F., & Peñuelas, J. (2022). Litter quality and stream phys-icochemical properties drive global invertebrate effectson instream litter decomposition. Biological Reviews, 97, 2023–2038. https://doi.org/10.1111/brv.12880

    Article  PubMed  Google Scholar 

  • Zuber, S. M., & Villamil, M. B. (2016). Meta-analysis approach to assess effect of tillage on microbial biomass and enzyme activities. Soil Biology and Biochemistry, 97, 176–187. https://doi.org/10.1016/j.soilbio.2016.03.011

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the UNOCHAPECO and the State Fund to Support the Maintenance and Development of Higher Education (FUMDES) for granting graduate scholarships. DB (Project number 3081895939/2022-1), RSR (Project number 302044/2022-1) and CRDMB (Project number 30249483/2022-0) are grateful to National Council for Scientific and Technological Development (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolina R. Duarte Maluche Baretta.

Ethics declarations

Conflict of interest

On behalf of all the authors, the corresponding author declares that there are no conflicts of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 235 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polesso, A.M., Hoff, E.M., Silva, E.R. et al. Edaphic fauna and residue decomposition rate under different management of plant species in no-tillage system. COMMUNITY ECOLOGY 25, 75–87 (2024). https://doi.org/10.1007/s42974-023-00179-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42974-023-00179-x

Keywords