Abstract
The no-tillage system (NTS) maximizes the use of plant species diversification during cultivation while minimizing disturbance to the seeding row and using the crop residues from previous species. Our objective was to compare management practices, including crop rotation (CR) and crop succession (CS), as well as a native fragment serving as a reference area (FC), and explore the relationship between litter decomposition and soil biological quality. To evaluate the decomposition of litter from soybean cultivation, we utilized fine (0.5 mm) and coarse (10 mm) mesh litter bags, which were placed in the soil and contained the winter crop residues. Additionally, sampling for edaphic fauna, microbiological, chemical, enzymatic, and environmental variables was conducted. A higher remaining mass was observed in the fine mesh litter bags (CR 75.5%, FC 68.3%, CS 63.9%) compared to the coarse mesh (FC 54.9%, CR 35.3%, CS 27.9%). Our results showed that diverse plant species composition led to a slower decomposition rate, similar to that found in native forests, stabilizing the agricultural system. Also, the decomposition rate was influenced by management practices, species selection, climate, and microbial activity. Epigeic invertebrates, particularly Detritivores/decomposers groups, played a significant role in litter decomposition, with higher decomposition rates observed in the coarse mesh. Microbial activity, influenced by soil attributes such as arylsulfatase enzyme activity, organic matter content, and soil moisture, significantly affected litter decomposition. The diversity of plant species in NTS increases the soil fauna and reduces litter decomposition rate. Therefore, we suggest NTS with CR using multiple plant species as a management that favors soil organisms in long-term systems.




Similar content being viewed by others
References
Alef, K., & Nannipieri, P. (1995). Methods in applied soil microbiology and biochemistry. Academic Press.
Anderson, J. D., & Ingram, J. S. I. (1993). Tropical soil biology and fertility: A handbook of methods. Oxford University Press.
Anderson, T. H. (1994). Physiological analysis of microbial communities in soil: Application sand limitations. In K. Ritz, J. Dighton, & K. E. Giller (Eds.), Beyond the biomass (1st ed., pp. 67–76). British Society of Soil Science.
Arf, O., Meirelles, F. C., Portugal, J. R., Buzetti, S., Sá, M. E., & Rodrigues, A. F. R. (2018). Benefits of maize intercropped with grasses and legumes and their effects on productivity in no-till systems. The Brazilian Journal of Maize and Sorghum, 17, 431–444. https://doi.org/10.18512/1980-6477/rbms.v17n3p431-444
Balin, N. M., Biachini, C., Ziech, A. R. D., Luchese, A. V., Mauricio, V. A., & Conceição, P. C. (2017). Soil fauna under different soil management systems with oats and crops cucurbits. Revista Scientia Agraria, 18, 74–84. https://doi.org/10.5380/rsa.v18i3.52133
Bani, A., Pioli, S., Ventura, M., Panzacchi, P., Borruso, L., Tognetti, R., Tonon, G., & Brusetti, L. (2018). The role of microbial community in the decomposition of leaf litter and deadwood. Applied Soil Ecology, 126, 75–84. https://doi.org/10.1016/j.apsoil.2018.02.017
Barbosa, V., Garçia, P., Rodrigues, E., & Paula, A. (2017). Biomass, carbon, and nitrogen in accumulated litter of planted and native forests. Floresta & Ambiente, 24, 20150243. https://doi.org/10.1590/2179-8087.024315
Baretta, D., Bartz, M. L. C., Fachini, I., Anselmi, R., Zortéa, T., & Maluche-Baretta, C. R. D. (2014). Soil fauna and its relation with environmental variables in soil management systems. Revista Ciencia Agronomica, 45, 871–879. https://doi.org/10.1590/S1806-66902014000500002
Basirat, M., Mousavi, S. M., & Abbaszadeh, S. (2019). The rhizosheath: A potential root trait helping plants to tolerate drought stress. Plant and Soil, 445, 565–575. https://doi.org/10.1007/s11104-019-04334-0
Bauer, D., Fuhr, C. S., & Schmitt, J. L. (2017). Dinamica do acumulo e decomposição de serapilheira em floresta estacional semidecidual subtropical. Pesquisas Botânica (brazil), 70, 225–235.
Bizari, D. R., Ferrarezi, R. S., Pereira, F. F. S., & Matsura, E. E. (2019). Biomass loss of corn mulching under no-till system for irrigated common bean production. Irriga, 24, 500–511. https://doi.org/10.15809/irriga.2019v24n3p400-511
Bradford, M. A., Maynard, D. S., Wieder, W. R., & Wood, S. A. (2016). Understanding the dominant controls on litter decomposition. Journal of Ecology, 104, 229–238. https://doi.org/10.1111/1365-2745.12507
Brown, G. G., Niva, C. C., Zagatto, M. R. G., Ferreira, S. A., Nadolny, H. S., Cardoso, G. B. X., Santos, A., Martinez, G. A., Pasini, A., Bartz, M. L. C., Sautter, K. D., Thomazini, M. J., Baretta, D., Silva, E., Antoniolli, Z. I., Decaëns, T., Lavelle, P. M., Sousa, J. P., Carvalho, F. (2015). Biodiversidade da fauna do solo e sua contribuição para os serviços ambientais. In Serviços ambientais em sistemas agrícolas e florestais do Bioma Mata Atlântica (pp. 122–154). EMBRAPA, Brasilia
Calheiros, A. C., Silva, C. A. R., Acioli, T. G. A., Araujo, K. D., & Souza, M. A. (2019). Relation of soil moisture with the diversity of edaphic mesophena organisms, Alagoas. Brazilian Journal of Animal and Environmental Research, 2(6), 1924–1929.
Castro, E. F., Nuvoloni, F., & Feres, R. (2018). Population dynamics of the main phytophagous and predatory mites associated with rubber tree plantations in the State of Bahia Brazil. Systematic and Applied Acarology, 23(8), 1578–1591. https://doi.org/10.11158/saa.23.8.8
Cavallet, B. V., Silva, E. R., Baretta, C. R. D. M., & Rezende, R. S. (2022). Effect of agriculture land use onstandart cellulosic substrates breakdownand invertebrates’ community. Community Ecology, 23, 277–288. https://doi.org/10.1007/s42974-022-00103-9
Crawley, M. J. (2007). The R Book. England: Wiley.
D’hose, T., Molendert, L., Vooren, L. V., Berg, W., Hoek, H., Runia, W., Evert, F., Berg, H., Spiegel, H., Sanden, T., Grignani, C., & Ruysschaert, G. (2018). Responses of soil biota to non-inversion tillage and organic amendments: An analysis on European multiyear field experiments. Pedobiologia, 66, 18–28. https://doi.org/10.1016/j.pedobi.2017.12.003
Dormann, C. F. E., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J. R. G., Gruber, B., Lafourcade, B., Leitão, P. J., Münkemüller, T., Mcclean, C., Osborne, P. E., Reineking, B., Schröder, B., Skidmore, A. K., Zurell, D., & Lautenbach, S. (2013). Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36, 27–46. https://doi.org/10.1111/j.1600-0587.2012.07348.x
Elmqvist, T., Valkó, O., Walloe, L., Smagghe, G., Van Montagu, M., Mihailova, M., Yovchevska, P., Basic, F., Prach, K., Svecova, E. B., Helenius, J., Peltonen-Sainio, P., Öpik, M., Niinemets, U., Takkis, K., Delseny, M., Karamanos, A., Lengyel, S., Morgante, M., Kadziuliene, Z., Veen, G. F., Singh, B. R., Tryjanowski, P., Santos, F. D., Janisova, M., Bengtsson, J., Boivin, P., Hartley, S. (2022). EASAC policy report 44: Regenerative agriculture in Europe: A critical analysis of contributors to European Union Farm to Fork and Biodiversity Strategies. Vol. 44, EASAC, Halle. https://easac.eu/fileadmin/PDF_s/reports_statements/Regenerative_Agriculture/EASAC_RegAgri_Web_290422.pdf
Erdenebileg, E., Wang, C., Ye, X., Cui, Q., Du, J., Huangz, L. G., & Cornelissen, J. H. C. (2020). Multiple abiotic and biotic drivers of long-term wood decomposition within and among species in the semiarid inland dunes: A dual role for stem diameter. Functional Ecology, 34, 1472–1484. https://doi.org/10.1111/1365-2435.13559
Ferreira, E., Stone, L. F., & Didonet, C. C. G. M. (2017). Population and microbial activity of the soil under an agroecological production systems. Revista Ciência Agronômica, 48, 22–31. https://doi.org/10.5935/1806-6690.20170003
Fontana, L. E., Tonello, G., Restello, R. M., & Hepp, L. U. (2020). Agriculture presence changes the leaf decomposition and of the aquatic invertebrate communities composition in subtropical streams. Revista Perspectiva, 44(165), 07–19. https://doi.org/10.31512/persp.v.44.n.165.2020.70.p.7-20
Forstall-Sosa, K. S., Souza, T. A. F., Lucena, E. O., Silva, S. A. I., Ferreira, J. T. A., Silva, T. N., Santos, D., & Niemeyer, J. C. (2020). Soil macroarthropod community and soil biological quality index in a green manure farming system of the Brazilian semi-arid. Biologia, 76, 907–917. https://doi.org/10.2478/s11756-020-00602-y
Gomes, D. S., Barbosa, A. S., Santos, T. M., Santos, S. K., Silva, J. H. C. S., & Aquino, Í. S. (2021). Release kinetics of CO2 and phytomass decomposition in systems of use and soil management. Research, Society and Development, 10, e9810111413. https://doi.org/10.33448/rsd-v10i1.11413
Graça, M. A. S., Barlocher, F., & Gessner, M. O. (2005). Methods to study litter decomposition. Springer, New York City. https://doi.org/10.1007/1-4020-3466-0
Khangura, R., Ferris, D., Wagg, C., & Bowyer, J. (2023). Regenerative agriculture: A literature review on the practices and mechanisms used to improve soil health. Sustainability, 15, 2338. https://doi.org/10.3390/su15032338
Kraft, E., Oliveira Filho, L. C. I., Carneiro, M. C., Klauberg Filho, O., Barreta, C. R. D. M., & Barreta, D. (2021). Edaphic fauna affects soy bean productivity under no-till system. Scientia Agricola, 78, e20190137. https://doi.org/10.1590/1678-992X-2019-0137
Kraft, E., Alexandre, D., Oliveira Filho, L. C. I., Baretta, C. R. D. M., Klauberg Filho, O., & Baretta, D. (2023). Is there a relationship between enchytraeids diversity and community with soybean (Glycine max L.) productivity in no-till system in subtropical soils of Brazil? Annals of Applied Biology, 183(2), 159–169. https://doi.org/10.1111/aab.12843
Legendre, P., & Legendre, L. (1998). Numerical Ecology. Elsevier.
Lucero, E. M., Vieira, C. B., Vieira, H. U., & Angela, D. (2020). Edaphic invertebrates in summer and winter crops at northwest of Rio Grande do Sul. Revista Brasileira De Agropecuária Sustentável, 10, 67–74. https://doi.org/10.21206/rbas.v10i1.9281
Matos, P. S., Barreto-Garcia, P. A. B., & Scoriza, R. N. (2019). Effect of different forest management practices on the soil macrofauna in the arboreal Caatinga. Revista Caatinga, 32, 741–750. https://doi.org/10.1590/1983-21252019v32n318rc
Melo, L. N., Souza, T. A. F., & Santos, D. (2019). Cover crop farming system affects macroarthropods community diversity in Regosol of Caatinga, Brazil. Biologia, 74, 1653–1660. https://doi.org/10.2478/s11756-019-00272-5
Mendes, I., Carvalho, S., Djalma, M. G., & Reis Junior, F. B. L. (2018). Bioanálise de solo: como acessar e interpretar a saúde do solo. Planaltina: EMBRAPA Cerrado.
Morini, M. S. C., Silva, O. G. M., Zambon, V., & Nocelli, R. C. F. (2017). Cultura de cana-de-açúcar no Brasil: manejo, impactos econômicos, sociais e ambientais. In C. S. Fontanetti & O. C. Bueno (Eds.), Cana-de-açúcar e seus impactos: uma visão acadêmica (pp. 31–50). Bauru: Canal 6.
Nehrani, S. H., Saadat, S., Delavar, M. A., Taheri, M., & Holder, N. M. (2020). Quantification of soil quality under semi-arid agriculture in the northwest of Iran. Ecological Indicators, 108, 105770. https://doi.org/10.1016/j.ecolind.2019.105770
Oberč, B. P., & Arroyo Schnell, A. (2020). Approaches to sustainable agriculture. Exploring the pathways towards the future of farming. Brussels: iUCN EURO.
Pedro, L., Pereira-Fernández, L. G., Gallego, E. L., Pérez-Marcos, M., & Sanchez, J. A. (2020). The effect of cover crops on the biodiversity and abundance of ground dwelling arthropods in a mediterranean pear orchard. Agronomy, 10, 580. https://doi.org/10.3390/agronomy10040580
Peng, Y., Vesterdal, L., Penuelas, J., Peguero, G., Wu, Q., Hedenec, P., Yue, K., & Wu, F. (2023). Soil fauna effects on litter decomposition are better predicted by fauna communities within litterbags than by ambient soil fauna communities. Plant and Soil, 487, 49–59. https://doi.org/10.1007/s11104-023-05902-1
Pioli, S., Sarneel, J., Thomas, H. J. D., Domene, X., Andrés, P., Hefting, M., Reitz, T., Laudon, H., Sandén, T., Piscová, V., Aurela, M., & Brusetti, L. (2020). Linking plant litter microbial diversity to microhabitat conditions, environmental gradients and litter mass loss: Insights from a European study using standard litter bags. Soil Biology and Biochemistry, 144, 107778.
Ruggiero, M. A., Gordon, D. P., Orrell, T. M., Bailly, N., Bourgoin, T., Brusca, R. C., Cavalier-Smith, T., Guiry, M. D., & Kirk, P. M. A. (2015). Higher level classification of all living organisms. PLoS ONE, 10, 1–60. https://doi.org/10.1371/journal.pone.0119248
Saad, L. P., Souza-Campana, D. R., Bueno, O. C., & Morini, M. S. C. (2017). Vinasse and its influence on ant (Hymenoptera: Formicidae) communities in sugarcane crops. Journal of Insect Science, 17(1), 11. https://doi.org/10.1093/jisesa/iew103
Schulte, L. A., Dale, B. E., Bozzetto, S., Liebman, M., Souza, G. M., Haddad, N., Richard, T. L., Basso, B., Brown, R. C., Hilbert, J. A., & Arbuckle, J. G. (2022). Meeting global challenges with regenerative agriculture producing food and energy. Nature Sustainnability, 5, 384–388. https://doi.org/10.1038/s41893-021-00827-y
Salomão, P. E. A., Kriebel, W., Santos, A. A., & Martins, A. C. E. (2020). The importance of straw no-tillage system for soil restructuring and organic matter restoration. Research, Society and Development, 9, e154911870. https://doi.org/10.33448/rsd-v9i1.1870
Santos, D. P., Marchão, R. L., Barbosa, R. S., Junior, J. P. S., Silva, E. M., Nóbrega, J. C. A., Nive, C. C., & Santos, G. G. (2020). Soil macrofauna associated with cover crops in an Oxisol from the southwest of Piauí state, Brazil. Arquivos Do Instituto Biológico, 87, 1–9. https://doi.org/10.1590/1808-1657000822018
Sarto, M. V. M., Borges, W. L. B., Bassegio, D., Pires, C. A. B., Rice, C. W., & Rosolem, C. A. (2020). Soil microbial community, enzyme activity, C and N stocks and soil aggregation as affected by land use and soil depth in a tropical climate region of Brazil. Archives of Microbiology, 202, 2809–2824. https://doi.org/10.1007/s00203-020-01996-8
Silva, R., Aguiar, A. C. F., Rebelo, J. M. M., Silva, E. F. F., Silva, F. G., & Siqueira, G. M. (2019). Diversity of edaphic fauna in different soil occupation systems. Revista Caatinga, 32, 647–657. https://doi.org/10.1590/1983-21252019v32n309rc
Simioni, F. J., Bartz, M. L. C., Wildner, L. P., Spagnollo, E., Veiga, M., & Baretta, D. (2017). Technical and economic efficiency indicators of corn grown in no-tillage system in the State of Santa Catarina, Brazil. Revista Ceres, 64(3), 232–241. https://doi.org/10.1590/0034-737X201764030003
Soares, E. F., Basso, C. J., DA Silva, R. F., DA Silva, D. M., DE Almeida, H. S., Moreira, T. F., Silveira, D. C., Pasinatto, G. A., & Vicente, D. M. (2023). Poultry litter and different cover crops and their effects on the edaphic fauna community of an Oxisol. Delos: Desarrollo Local Sostenible, 16, 683–698. https://doi.org/10.1590/0034-737x201764030003
Sofo, A., Mininni, N. A., & Ricciuti, P. (2020). Soil macrofauna: A key factor for increasing soil fertility and promoting sustainable soil use in fruit orchard agrosystems. Agronomy, 10, 456. https://doi.org/10.3390/agronomy10040456
Souza, T. A. F., Santos, D., Lucena, E. O., Silva, A. J., Silva, S. A. I., Lima, B. J. S., & Marques, A. L. (2017). Solos em Sistemas Agroecológicos. In E. O. Lucena, A. J. Silva, F. J. Silva, S. A. I. Silva, A. L. Marques, B. J. S. Lima, T. A. F. Souza, & D. Santos (Eds.), Solos em Sistemas Agroecológicos (1st ed., pp. 10–40). Areia: Saraiva.
Sparling, G. P., & West, A. W. (1988). A direct extraction method to estimate soil microbial C: Calibration in situ using microbial respiration and 14C labeled sells. Soil Biology & Biochemistry, 20, 337–343. https://doi.org/10.1016/0038-0717(88)90014-4
Tabatabai, M. A. (1994). Soil enzymes. In R. W. Weaver (Ed.), Methods of soil analysis (pp. 775–833). Soil Science Society of America.
Vance, E. D., Brooks, P. C., & Jenkinson, D. S. (1987). An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 19, 703–707. https://doi.org/10.1016/0038-0717(87)90052-6
Verchot, L. V., & Borelli, T. (2005). Application of para-nitrophenol (pNP) enzyme assays in degraded tropical soils. Soil Biology Biochemistry, 37(4), 625–633. https://doi.org/10.1016/j.soilbio.2004.09.005
Viana, E., Cezimbra, J. C. G., Silva, D. M., Silva, D. A. A., Ramires, M. F., Bohrer, R. E. G., Bisognin, R. P., Guerra, D., Lanzanova, M. E., Souza, E. L., & Redin, M. (2022). Diversity of soil fauna in soils with different management systems in the north of Rio Grande do Sul. Research, Society and Development, 11, e42211528307. https://doi.org/10.33448/rsd-v11i5.28307
Wilhelm, B., Cánovas, J. A. B., Macdonald, N., Toonen, W. H., Baker, V., Barriendos, M., Benito, G., Brauer, A., Corella, J. P., Denniston, R., Glaser, R., Ionita, M., Kahle, M., Liu, T., Luetscher, M., Macklin, M., Mudelsee, M., Munoz, S., Schulte, L., … Wetter, O. (2019). Interpreting historical, botanical, and geological evidence to aid preparations for future floods. Wiley Interdisciplinary Reviews: Water, 6, e1318. https://doi.org/10.1002/wat2.1318
Yan, Z., Qi, Y., Dong, Y., Peng, Q., Guo, S., He, Y., & Li, Z. (2017). Precipitation and nitrogen deposition alter litter decomposition dynamics in semiarid temperate steppe in Inner Mongolia, China. Rangeland Ecology & Management, 71, 220–227. https://doi.org/10.1016/j.rama.2017.12.003
Yue, K., de Frenne, P., Van Meerbeek, K., Ferreira, V., Fornara, D. A., Wu, Q., Ni, X., Peng, Y., Wang, D., Heděnec, P., Yang, Y., Wu, F., & Peñuelas, J. (2022). Litter quality and stream phys-icochemical properties drive global invertebrate effectson instream litter decomposition. Biological Reviews, 97, 2023–2038. https://doi.org/10.1111/brv.12880
Zuber, S. M., & Villamil, M. B. (2016). Meta-analysis approach to assess effect of tillage on microbial biomass and enzyme activities. Soil Biology and Biochemistry, 97, 176–187. https://doi.org/10.1016/j.soilbio.2016.03.011
Acknowledgements
The authors would like to thank the UNOCHAPECO and the State Fund to Support the Maintenance and Development of Higher Education (FUMDES) for granting graduate scholarships. DB (Project number 3081895939/2022-1), RSR (Project number 302044/2022-1) and CRDMB (Project number 30249483/2022-0) are grateful to National Council for Scientific and Technological Development (CNPq).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
On behalf of all the authors, the corresponding author declares that there are no conflicts of interest.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Polesso, A.M., Hoff, E.M., Silva, E.R. et al. Edaphic fauna and residue decomposition rate under different management of plant species in no-tillage system. COMMUNITY ECOLOGY 25, 75–87 (2024). https://doi.org/10.1007/s42974-023-00179-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s42974-023-00179-x